

Análise da concentração de radioelementos em relevos do norte de Goiás por meio de sensoriamento remoto e aerogamaespectrometria

Bruno Leonardo Gonçalves e Castro, Adriana Chatack Carmelo, Augusto César B. Pires - Universidade de Brasília (UnB)

Copyright 2012, SBGf - Sociedade Brasileira de Geofísica

Este texto foi preparado para a apresentação no V Simpósio Brasileiro de Geofísica, Salvador, 27 a 29 de novembro de 2012. Seu conteúdo foi revisado pelo Comitê Técnico do V SimBGf, mas não necessariamente representa a opinião da SBGI ou de seus associados. É proibida a reprodução total ou parcial deste material para propósitos comerciais sem prévia autorização da SBGI.

Resumo

O presente estudo teve como objetivo verificar algumas formas de relevo da região norte do estado de Goiás e sua relação com os radioelementos K. Th e U, por meio dados de sensoriamento remoto de е aerogamaespectrometria. O conceito de classificação de superfície regional de aplainamento norteou a identificação das formas de relevo em estudo. Foi verificado que a mobilidade dos radioelementos apresenta relação com a altimetria como já previsto na literatura, mas suas concentrações também variam em função das diferentes formas de relevos denudacionais em estudo.

Introdução

Na natureza existem mais de cinquenta isótopos radioativos instáveis, mas devido a sua raridade, escassez ou baixa radioatividade emitida, os elementos que mais se destacam para a investigação do fenômeno são: urânio (²³⁸U), tório (²³²Th) e potássio (⁴⁰K) (IAEA, 2003).

A radiação gama é detectada na superfície da Terra a partir do processo de desintegração de elementos radioativos ou radioelementos. Esse fenômeno ocorre devido à instabilidade do núcleo do átomo que libera energia a partir de emissões de partículas alfa e/ou beta e de radiação gama (IAEA, 2003).

Os levantamentos gamaespectrométricos detectam radiação gama dos primeiros 30 cm de solo e indiretamente são obtidas variações da geoquímica referente aos radioelementos. Nessa porção mais superficial, os efeitos do intemperismo podem promover perda de K em todos os tipos de rochas, já que esse radioelemento é mais solúvel. Com as ações dos processos de intemperismo físico e químico, os radioelementos presentes nos minerais das rochas podem se tornar instáveis químicamente ou podem ser fragmentados. Tal fato, facilita a redistribuição destes elementos no ambiente e onde poderão ser incorporados ao regolito. Quando ocorre diferenças entre as fontes dos radioelementos e do regolito, é devido a reorganização textural e geoquímica que acontece no perfil de intemperismo (WILFORD et al., 1997).

Também, quanto às formas em diferentes tipos de relevo, as concentrações de K, Th e U podem aparecer diferentes.

A área de estudo está localizada no quadrante norte do estado de Goiás (Figura 01), entre as coordenadas 47°43'15,599''W - 13°23'41,264''S e 47°6'56,126''W - 13°48'23,305''S, que abrangem os municípios de Cavalcante, Teresina de Goiás, Nova Roma e Monte Alegre de Goiás. Foram analisadas seis áreas amostrais e identificadas seis Superfícies Regionais de Aplainamento (SRAs), das quais se destacam as seguintes formas: relevos tabulares, morros, inselbergs e colinas. Foi verificada a relação destas formas com as concentrações de K, Th e U a partir de dados de gamaespectrometria aérea e sensoriamento remoto.

Figura 1 – Área de estudo.

O mapeamento geomorfológico de Goiás apresenta uma classificação com vários níveis com as seguintes categorias dominantes: Sistemas Agradacionais e Sistemas Denudacionais. Esses Sistemas Denudacionais são subdivididos em sete formas associadas às Superfícies Regionais de Aplainamento (SRA's): Zonas de Erosão Recuante, Morros e Colinas, Hogbacks, Formas Dômicas, Braquianticlinais, Pseudo-domos e Relevos Tabulares (GOIAS, 2005; CARVALHO e BAYER, 2008). As unidades agradacionais são quatro: Planícies Fluviais, Planícies Fluvias Meandriformes, Terraços e Lacustres (GOIÁS, 2005; CARVALHO e BAYER, 2008). As SRA's foram classificadas em quatro unidades, a partir da altimetria como critério principal e as cotas variando de 250 m a 1600 m (Figura 02).

Cotas altimétricas (m)
1250-1600
900-1250
900-1000
750-1000
550-850
550-750
550-750
500-400
500-550
250-400
250-400

Figura 2 – Compartimentação altimétrica das Superfícies Regionais de Aplainamento de Goiás (CARVALHO e BAYER, 2008).

Metodologia/ Problema Investigado

Os dados do projeto *The Shuttle Radar Topography Mission* (SRTM) referente a área de estudo foram adquiridos por meio do projeto Topodata (VALERIANO, 2009). Os dados selecionados foram declividade e altitude, em formato GeoTiff, da Folha 13S48.

Os dados aerogamaespectrométricos (canais potássio, tório, urânio e contagem total) são do projeto "Levantamento Aerogeofísico do Estado de Goiás, Paleo-Neoproterozóico do Nordeste de Goiás", os quais foram pré-processados e processados a partir do *software Oasis Montaj*, versão 7.1.1, *Geosoft*®.

O recorte das imagens SRTM foi realizado a partir do software ENVI 4.8®, de acordo com a definição da área de estudo.

Os valores do banco de dados gamaespectrométrico, foram ajustados segundo análise estatística dos teores de K, eTh e eU, tendo como referência os teores apresentados para as rochas da crosta autraliana (DICKSON E SCOTT, 1997). Esse procedimento foi realizado no *software Oasis Montaj*, versão 7.1.1, *Geosof*®.

Após а verificação preliminar dos dados gamaespectrométricos, segundo informações das litologias que constituem a área de estudo, foi estabelecido que as concentrações dos radioelementos fora da faixa aceita seriam modificadas. Esse procedimento foi efetuado a partir da divisão dos dados por 1/2 ou 1/4 do desvio-padrão apresentado pelos dados de cada radioelemento, a fim de ajuste aos valores de referência, sem perda de informações relevantes. Os valores negativos que constituíam o banco de dados foram excluídos da amostra, considerando-os dummies.

Após a análise dos valores dos radioelementos foram gerados mapas e *grids,* resultantes da análise estatística, e produtos como a composição colorida RGB/ K *e*Th *e*U.

Os dados aerogamaespectrométricos foram exportados e convertidos para o formato *raster* e padronizados com projeção e datum (UTM/SAD 69), a partir do *software*

ENVI 4.8, ERSI®. Também, foi realizada extração de regiões de interesse e análise estatística de seis áreas de amostragem.

Para analisar as relações entre as formas de relevo e os dados gamaespectrométricos, foram utilizadas as imagens gamaespectrométricas e SRTM com o intuito de aplicar um modelo digital de terreno como etapa preliminar de integrar as duas informações. Esse procedimento foi elaborado no *software* ENVI 4.8, ERSI® como também a construção dos perfis para identificação das formas de relevo e sua correspondente altimetria, e como a confecção dos gráficos de dispersão.

Após a seleção de seis regiões de interesse (ROI's), foram verificadas as médias das concentrações dos radioelementos e suas relações com as SRA's. Para a normalização dos valores dos radioelementos foi utilizada a função *standardize* do *software* Minitab®.

Resultados

Foram analisadas seis áreas amostrais, e identificadas seis SRA's, de acordo com a classificação de Carvalho e Byer (2008) (Figura 03). Mas, quanto à forma de relevo, foram verificadas as formas colinas, morros, formas tabulares e inselbergues. Essas apresentaram características distintas quanto à distribuição dos radioelementos, o que indica a mobilidade dos mesmos diante dos processos de movimentação do regolito no relevo.

A área amostral 1 (Figura 4a) constitui colinas com maior presença de *e*Th (3,067) onde o relevo em análise foi identificado como SRAIIC. Os gráficos de dispersão evidenciaram maior dispersão entre o *e*U-K e o *e*Th-K. O *e*Th-*e*U apresentou características de comportamento linear. Verifica-se uma população no gráfico de dispersão de Declividade - Altimetria de amostras que concentram seus valores em torno de 800 m e declividade em torno de 5°.

A área amostral 2 (Figura 4b) possui formas tabulares identificada com a classe SRAIIA onde é maior a concentração de eTh (2,826). O comportamento dos dados K-eTh e eU-eTh a partir dos gráficos de dispersão, são similares em sua forma e na concentração dos valores médios de K. As amostras do gráfico de dispersão eU-eTh tende ao comportamento linear. O gráfico de dispersão Declividade - Altimetria apresenta duas populações com cotas de 800 m a 1100 m e declividade na faixa de 4° a 8°.

A área amostral 3 (Figura 4c) caracterizada também por colinas e concentrações de eTh (4.476) e K (4,352) muito próximas de suas médias e foi identificada como SRAIVA. O comportamento dos gráficos de dispersão entre K-eTh e eU-eTh são semelhantes, tendendo a um ajuste linear. O gráfico eU-K é o mais disperso. Verifica-se também que no gráfico de dispersão da Declividade - Altimetria há duas populações de amostras que concentram valores na faixa de 400 m a 700 m e declividade entre 3° a 10°.

A área amostral 4 (Figura 4d) foi identificado inselbergs constituindo maiores concentrações de eTh (*3,354*) e definida como SARA IIA apresentando maior dispersão das amostras eU-K e eU-eTh sendo que o gráfico K-eTh as amostras tendem a distribuição normal. O gráfico de Declividade - Altimetria concentra uma população com baixos valores de declividade (0 - 4°) e altimetria (350 m a 500 m).

A área amostral 5 (Figura 4e) apresenta relevo com presença de morros que possuem maiores concentrações de K (2,838) e foi definida como SRAIIB. As amostras de dispersão dos gráficos de K-eTh, eU-K e eU-eTh tendem a tendem a distribuição com maior ajuste no gráfico K-eTh. Os valores das amostras do gráfico de Declividade - Altimetria apresentam dispersão de valores que varia entre 500 m a 1200 m e declividade com forte inclinação, podendo atingir até 50°.

A área amostral 6 (Figura 4f) possui maiores concentrações de K (1,792), o relevo possui colinas identificadas como SRAIVC. Quanto aos gráficos de dispersão, verificou-se que as amostras do gráfico K-eTh tendem a simetria e há maior dispersão nos gráficos de eU-K e eU-eTh. O gráfico de Declividade - Altimetria possui uma população que concentra amostras com 0°-4°, de declividade, e a faixa de altimetria entre 350 m a 400 m.

Discussão e Conclusões

Foi verificado que as áreas amostrais 5 e 6 constituem relevos com morros e colinas e apresentam maiores concentrações de K. A maior concentração desse elemento está em relevos mais rebaixados e pode ser observada na figura 3 como áreas de colinas. Isto é explicado devido à mobilidade do potássio em áreas com relevos mais suaves que são formados por processos de deposição.

O urânio apresenta maior presença na área amostral 1 em forma de relevo identificada como colina. Em outras formas de relevo, o urânio obteve baixas concentrações. Devido à baixa mobilidade química apresentada pelo tório, a área analisada mostra baixas concentrações desse por ser uma região bastante desgastada por processos erosivos.

O tório esteve presente, em maiores concentrações, nas áreas amostrais 1, 2, 3 e 4 especificamente em colinas, formas tabulares e *inselbergs*. Nas duas últimas, foi previsto a presença desse radioelemento devido a sua baixa mobilidade. Entretanto, sua presença em áreas de colinas pode também estar associada aos processos de erosão muito antigos, de idade paleoproterozóica (DARDENNE *et al.*, 1999; MARTINS, 1999).

Figura 3 – Modelo Digital de Terreno (MDT) com sobreposição de imagem aerogamaespectrométrica composição colorida RGB/ K, eTh, eU.

Os relevos de morros e ineslbergs tendem a concentrar maiores teores de K. Os radioelementos apresentam comportamento associados aos processos de mobilidade conforme a altimetria, como já verificado na literatura. Mas foi observado que suas concentrações podem variar com as formas de relevos denudacionais.

Seria relevante o desenvolvimento de estudos que investiguem as relações entre outras formas de relevo e assinaturas aerogamaespectrométricas. suas pois padrões associados poderão ser identificados classificação possibilitando novas análises de geomorfológica associada geoquímica dos à radioelementos na região.

Agradecimentos

Os autores agradecem a Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), pela bolsa de doutoramento concedida, e ao Serviço Geológico Brasileiro – CPRM pela disponibilização dos dados aerogamaespectrométricos.

Referências

CARVALHO, T.M.D.; BAYER, M. 2008. Utilização dos produtos da "Shuttle Radar Topography Mission" (SRTM) no Mapeamento Geomofológico do Estado de Goiás. Revista Brasileira de Geomorfologia, v. 9, n. 1, p. 35-41.

DARDENNE, M.A. 2000. The Fold Belt. In: CORDANI, U.G.; MILANI, E.J.; THOMAZ FILHO, A.; CAMPOS, D.A. (eds.). Tectonic Evolution of South America. 31st Int. Geol. Congr., Rio de Janeiro, p. 231-263.

DICKSON, B.L.; SCOTT, K.M. 1997. Interpretation of aerial gamma-ray surveuys-adding the geochemical factors. AGSO Journal of Australian Geology & Geophysics, v. 17, n. 2, p. 187-200.

GOIÁS. SECRETARIA DE INDÚSTRIA E COMÉRCIO. 2005. Mapa Geomorfológico do Estado de Goiás: Relatório Final. Goiânia: [s.n.]. IAEA, INTERNACIONAL ATOMIC ENERGY AGENCY. 2003. Guidelines for radioelement mapping using gamma ray spectometric data. [S.I.]: IAEA, 179 p.

VALERIANO, M.M.; ROSSETTI, D.F.; ALBUQUERQUE, P.C.G. 2009. Topodata: desenvolvimento da primeira versão do banco de dados geomorfométricos locais em cobertura nacional. Simpósio Brasileiro de Sensoriamento Remoto. Natal-RN: INPE. Anais, p. 1-8.

Figura 4 – Perfil topográfico, gráficos de valores das médias de concentração dos radioelementos e gráficos de dispersão.